Det blåser kraftigt och vågorna går höga. Allting gungar och det är svårt att gå – vi vinglar fram i korridorerna och håller oss gott fast i trappräckena på väg ner till matsalen. Men vi har varit länge om bord nu och man är van vid att det rör på sig, så jag är inte sjösjuk.
Kanske har du hört talas om «the roaring forties», the «furious fifties» och «the screaming sixties»? Det är där vi är nu… På de här breddgraderna (mellan 40 och 60S) blåser det nästan alltid stark vind från väst och det är lite land och bergskejdor i vägen som hindrar luftströmmen.
Alla vet att när det blåser så blir det vågor, och att ju mer det blåser ju större blir vågorna. Vågorna är imponerande och de slår mot båten med en enorm kraft – men vinden gör mer än vågor! När vinden blåser över havsytan så «drar» den vattnet i ytan med sig (vi säger att vinden utövar en stress på ytan) men vattnet under, som inte rör på sig, drar åt andra hållet. Om inte jorden hade snurrat, så hade det varit enkelt: då hade vattnet flyttat sig med vinden. Hastigheten hade minskat ju längre ned i djupet vi såg, men allt vatten hade gått i samma riktning. Men jorden snurrar – ett varv varje dag – och då blir allt mer komplicerat… resultatet blir faktiskt att vattnet inte flyttar sig med vinden, utan på tvärs av den!
Det «varma» vattenmassan som strömmar in under shelfisen i Amundsenhavet kallar vi oceanografer för «Circumpolar Deep Water» (CDW) och är till stor del vatten som för länge sen (kanske tusen år eller så) sjönk ner til botten i Nord Atlanten och så började en långsam resa söderut mot Antarktis. Långt söderut fångas det upp av «västvinddriften (eller den Antarktiska circumpolarströmmen) som ohindrat strömmar runt, runt, runt den Antarktiska kontinenten. Vindmönstret här gör att ytvattnet i söder strömmar åt söder medan det i norr strömmar åt norr – så i mitten blir det inget ytvatten kvar! Det fylls då på underifrån; vattnet nere i djupet pumpas uppåt och kan till exempel strömma in på den relativt grunda (400-500 m) kontinentalsockeln i Amundsenhavet.
Vi är på väg hemåt och vi har lämnat Antarktis bakom oss – några av forskarna ombord studerar virvlar den Antarktiska curcumpolarströmmen, de har precis börjat med sitt arbete, men jag är färdig. De instrument som skulle ut i vattnet är i vattnet, och de som skulle upp på shelf isen* är på plats. Det är fortfarande två veckor kvar innan vi kan mönstra av och gå i land, och dagarna går långsamt när de inte längre är fyllda med arbete ute på däck. I går kväll var det någon som plockade fram plastmuggar (den tjocka typen, som nästan är som frigolit) och tuschpennor och det blev allmän pysselkväll i matsalen… nu hänger de allihopa i en påse på CTD:n och väntar på att den ska i vattnet igen. Vad tror du sker då?
[slr-togglebox title=”Gissa innan du klickar här för att se hur kopparna såg ut efter att ha sänkts til 3800 m djup” color=”white”]
Så här såg muggarna ut när de följt med CTD’n ned på 3800 m djup! Med hur manga procent har volymen på kopparna krympt?
[/slr-togglebox]
* Vi har installerat fyra stycken isradar på isen – varannnan timme mäter de hur tjock shelfisen under dem är, och på så sätt får vi reda på hur fort den smälter. När Karen och Povl flög ut med helikoptern för att installera dem (jag höll på med mina riggar och kunde inte följa med) så passade de också på att ta reda på hur mycket vatten som är under isen. Hur man gör det? Enkelt – du behöver bara en (speciell) mikrofon, en metallplatta och en stor slägga. Så slår du allt vad du kan med släggan på metallplattan… och lyssnar ekot ekot! Det första kommer från undersidan av isen, det andra från havsbottnen! Om det första ekot kommer efter 0.24s och det andra efter 0.4667s, hur tjock är då isen? Hur långt är det ner till havsbottnen? Ljudets hastighet i vatten är ca 1500 m/s och i is är den 4000 m/s. För att få säkrare resultat så har man flera mikrofoner på en lång linje. När når det första ekot fram till en mikrofon som står hundra meter bort? När når det andra fram? Tänk på vad Schnell sa!
Vind og havstrømmer har en styrke og en retning, og vi bruker derfor vektorer for å beskrive dem. For eksempel er \(\vec{u}=u\vec{i} + v\vec{j}\). \(\vec{i}\) og \(\vec{j}\) enhetsvektorer som peker mot øst og nord (se figur under), mens \(u\) og \(v\) angir lengden på vektoren eller styrken på strømmen i den retningen. Om vinden blåser mot nord med 10 m/s så er \(\vec{u}=10\vec{i}\); blåser den mot sør så er \(\vec{u}=-10\vec{i}\); og blåser den mot nordøst så er \(\vec{u}=7.1\vec{i}+7.1\vec{j}\).
Isforholdene forandrer seg hele tiden på grunn av vind og havstrømmer. Så kapteinen må hele tiden følge med og se på for eksempel satellittbilder slik at vi ikke blir «fanget» av drivisen. Araon er en isbryter, men å bryte is går sent og bruker mye drivstoff. Havisen er relativt tynn og påvirkes mest av vinden. En tommelfingerregel er at isen forflytter seg med ca 2% av vindhastigheten og ca 30 grader til venstre for vinden (til høyre i Arktis).
Oppgave 1
Vinden blåser 20 m/s mot vest og iskanten er 5 km fra land
a) Uttrykk vinden og isens bevegelse i vektorformat!
b) Hvor langt sørover forflytter isen seg på en time?
c) Hvor fort må Araon kjøre for å komme forbi odden (se figur) inne isen stenger passasjen? Klarer vi det?
Oppgave 2
Vinden utøver et stress \((\vec{\tau}=\tau_x\vec{i} + \tau_y\vec{j})\) på vannoverflaten og setter opp en strøm i vannet. Stressets størrelse kan vi regne ut fra vinden: \(\vec{\tau}=C_{D}\left|\vec{u}\right|\vec{u}\), der \(\vec{u}=u\vec{i}+v\vec{j}\) er vinden i 10 m høyde.
a) Om det blåser 10 m/s mot nord og \(C_D=1.6\times10^{-3}\), hvor stort er stresset da? I hvilken retning virker det?
b) Man vet at størrelsen på \(C_D\) endres når det er is på vannet, og noen forskere har foreslått at \(C_D=10^{-3}\times(1.5+2.233C_i-2.333C_i^2)\) der \(C_i\) er andelen av havoverflaten som er dekket av is (iskonsentrasjonen). For hvilken iskonsentrasjon er \(C_D\) størst? Minst? Hvor stor var iskonsentrasjonen i oppgaven over?
Oppgave 3
Under sin ekspedisjon på FRAM (1893-1896) så observerte Nansen at isen drev til høyre (i Arktis) for vinden og han ba sin venn Vilhelm Bjerknes få en av sine studenter til å studere problemet. Det ble svensken Vagn Walfrid Ekman som forklarte isens bevegelse, som er et resultat av friksjon og jordens rotasjon. Ekman satte opp en teori for hvordan strømmen som vinden lager oppfører seg. Strømmen endrer seg med dypet (\(z\)) og vi kan skrive \(\vec{u(z)}=u(z)\vec{i} + v(z)\vec{j}\). Størrelsen på \(u(z)\) og \(v(z)\) kan vi beregne fra følgende formler (som ikke er så kompliserte som de ser ut!)
der \(z\) er høyde (så dybde er negativt), \(f=1.46\times10^{-4}sin(breddegrad)\) er Coriolis faktoren og \(d=\sqrt{\frac{2\nu}{\left|f\right|}}\) er tykkelsen på laget som kjenner vindens påvirkning. Vi kaller det ofte Ekman laget. \(\nu=10^{-2}m^2/s\) er viskositeten* – vannets “tykkelse” eller treghet (sirup har for eksempel en høyere viskositet enn vann **). Teorien er viden kjent blant oseanografer og kalles bare for “Ekman spiralen”.
* Den molekylære viskositeten til vann er mye lavere, \(\nu=10^{-6}m^2/s\), men i havet gjør virvler og turbulens at den effektive viskositeten blir større.
a) Hvilken verdi har Coriolis faktoren i Amundsenhavet? I Bergen?
b) Hvor tykt er Ekman laget? Et isfjell kan være fler hundre meter tykt – tror du det påvirkes av strømmen som vinden lager?
c) Om det blåser 15 m/s mot vest og det er isfritt, hvor stor er da \(\tau_x\) og \(\tau_y\)? (Se oppgave 2)
d) Fra hvilken retning (og med hvilken hastighet) flyter vannet i overflaten (z=0)? I Ekmandypet (z=-d)? På hvilket dyp går strømmen i motsatt retning av vinden?
e) Prøv å plotte strømmen! Hvorfor tror du vi snakker om Ekman spiral?
f) Når vi sender ned vår LADCP*** får vi strømprofiler med en oppløsning på 8 m (dvs vi får en verdi for strømmen for hver åttende meter). Tror du vi klarer å observere Ekman spiralen? Hvorfor/hvorfor ikke?
g) Når det blåser mot vest i Bergen, i hvilken retning går overflatestrømmen da?
*** Et instrument som følger med CTD’en ned til bunn og som måler strømmen i vannet på vei ned. Man får da strømprofiler i tillegg til profiler av salt og temperatur.
Oppgave 4
Om man summerer opp (integrerer) strømmen som vinden lager i Ekman laget så kan man regne ut transporten, dvs hvor mye vann som flyttes i en retning på grunn av vinden. Det kaller vi for Ekman transporten, \(\vec{Q_{Ekman}}=U\vec{i}+V\vec{j}\). Da får vi at
\(U=\frac{10^{-3}}{f}\tau_y\)
\(V=-\frac{10^{-3}}{f}\tau_x\)
Enheten på U og V er \(m^3/m/s\) (eller \(m^2/s\)) og de angir altså hvor mye vann som flyter forbi per meter per sekund. Uttrykket for \(\tau\) finner du i oppgave 2.
a) Om det blåser 15 m/s mot nordvest og det er isfritt, hvor stor er da U og V? I hvilken retning flyttes vannet?
b) Hvor stor er vinkelen mellom vinden og transporten?
c) Om vi har to bøyer (se figur under) som ligger 10 km i fra hverandre og der en linje mellom de to bøyene er parallell med vinden, hvor mye vann strømmer mellom bøyene på en time? Hva tror du skjer om linjen mellom A og B hadde vært kystlinjen?
Når vinden blåser parallelt med kysten, kommer vannet enten til å samles opp mot kysten eller «forsvinne» fra kysten.
d) I hvilken retning tror du det blåser når vi får oversvømming på Bryggen i Bergen (tidevannet er selvsagt også viktig)?
e) Ved kysten av det Antarktiske kontinentet blåser vinden vanligvis mot vest. Lengre nord (60S) blåser det sterke vinder mot øst. Skisser hvordan vinden blåser og i hvilken retning Ekman transporten går. Hva tror du skjer i midten? Diskuter i grupper før dere leser svaret lenger nede på siden.
Konvergens og divergens i havet
Når vinden og dermed Ekman transporten har ulik retning (det holder egentlig at den endrer størrelse) fra ett område til et annet (som i oppgave 4) får vi “konvergens” (hvis overflatevann “samles sammen”, dvs. hvis pilene som viser Ekman transport peker mot hverandre) eller “divergens” (dvs. hvis pilene går fra hverandre). Når vi har divergens og overflatevannet “forsvinner” så må det etterfylles med vann nedenfra. Vann fra dypet “suges” opp til overflaten av vinden. I områder der dette skjer kontinuerlig (for eksempel rundt Antarktis) er det høy biologisk aktivitet ettersom vannet nede i dypet er rikt på næringsstoffer. Vindmønsteret rundt Antarktis løfter opp relativt tungt vann fra dypet og bidrar til vannet i den øvre delen av havet er tyngre enn i andre områder. Vann som har sunket til bunnen av Nord-Atlanteren kommer hit til overflaten igjen. For å lese mer, så kan du google f.eks ” wind driven upwelling “.
Jorden snurrer rundt, rundt, rundt… hele tiden, og det påvirker hvordan vannet i havet strømmer og hvordan vinden blåser (det påvirker dog ikke hvilken retning virvelen i badekaret snurrer når du tømmer det). Vi kaller det for Corioliseffekten eller Coriolis kraften.
Du trenger:
Skjærebrett
Linjal (gjerne lang)
Lim (for å feste linjalen på skjærebrettet)
En penn
Tegnestifter
Et hvitt papir
En medhjelper!
Klipp ut en stor* sirkel av papiret og fest den i midten av skjærebrettet med en tegnestift (sjekk med mamma eller pappa først om du får lov). Fest linjalen med lim (eller tape) på skjærebrettet slik at den går over papirsirkelen. Tegn så en rett strek langs linjalen samtidig som medhjelperen din snurrer på papiret (med klokken). Hvordan ser det ut?
Papiret er «jorden» sett fra sydpolen. Hvordan ser det ut fra nordpolen? Snurr papiret den andre veien!
* men ikke så stor at diameteren til sirkelen er større enn lengden på linjalen.
Mens Elin er på tokt i Amundsenhavet er eg på tokt til Filchner-Ronneisen som ligg heilt sør i Atlanteren, i Weddellhavet.
Isdekke i Antarktis er som ein hatt. Inne på kontinentet ligg den fleire tusen meter iskappa, toppen av hatten, men ut mot randområda blir isen tynnare og flyt på havet som ein hattebrem. Denne flytane delen av isen heiter isbrem på norsk, men som oftast seier vi isshelf. «Hattebremmen» er ikkje like brei rundt heile Antarktis-kontinentet, men delt opp i to store og mange mindre isbremmar.
Fleire av dei små isbremmane, spesielt på den Antarktiske halvøya og i Amundsenhavet blir dramatisk tynnare på grunn av auka tilførsel av varme frå havet. Isbremmane spelar ei viktig rolle i stablisering av isdekket i Antarktis og i produksjonen av det kaldaste og tyngste vatnet i havet. Det store spørsmålet er kva som skjer med dei største; Ross- og Filchner-Ronne-isbremmane, og om vi kan risikere at is-kappa over vest Antarktis kollapsar.
Verdas kaldaste havvatn blir produsert under Filchner-Ronne-isbremmen i Antarktis, i volum verdas største flytane lekam. Dette superkalde havvatnet er kjelda til det tyngste vatnet i verdshava, det Antarktiske botnvatnet, som dekker mesteparten av botn i Stillehavet, Indiahavet og Atlanteren. Isbremmane er også ei motkraft som hindrar innlandsisen i å strøyme ut i havet. Om isbremmane smeltar, aukar utstrøyminga av innlandsis til havet og havnivået vil dermed stige.
Inntil nå ser vi ingen teikn til auka smelting av Filchner-Ronneisen, men nokre klimamodellar viser at dette kjem til å endre seg i nær framtid (50 år). I følgje ein modell vil smeltinga av undersida av Filchner-Ronne isbremmen auke frå i dag 20 cm/år til 4 m/år i 2060 p.g.a auka tilførsel av varme frå havet. Dette vil få dramatiske konsekvensar med kraftig stigning av havnivået.
Det er langt frå sikkert at dette vil skje, men det er eit veldig viktig klimaspørsmål og det er grunnen til at eg nå er her sør i isøydet. Vi må forske på om havsirkulasjonen vil endre seg slik at meir varmt havvatn strøymer innunder isbremmane, og så må vi bygge observatorium der vi kan måle endringar i havstraumane over mange tiår.
Det er slike observatorium vi nå bygger inne på Filchner-Ronneisen og i havet utafor. I havet der vi kan segle med isbrytarar består observatoria av måleriggar slike som Elin har omtala. For å gjere observasjonar under isbremmen må vi første bore oss gjennom isen og til det treng vi mykje utstyr og drivstoff. I år har den tyske isbrytaren Polarstern frakta utstyr og drivstoff fram til Ronneisen der vi bygger eit depot med mange tusen liter drivstoff. Til å frakte det til der vi skal bore, bruker vi beltevogner av same type som blir brukt til å preparere skiløyper og slalåmbakkar. Sledane som vi frakter tankane med drivstoff på er berre eit stort stykke plastikk.
For å lage eit hol gjennom den mange hundre meter tjukke isen bruker vi varmt vatn som vi pumper gjennom ein slange og fram til boren. Boren er eit tungt røyr med ei dyse som spyler og smeltar isen mens den sakte blir senka ned gjennom isen.
Inne i isen er det -25°C og vatnet i holet frys difor etter kort tid, så vi må vere raske med å sette ut instrumenta som skal måle i havvatnet under isen. Instrumenta er kopla til ein kabel som går gjennom isen slik at dei kan sende data til overflata. Når instrumenta er på plass er det berre å la holet fryse igjen og starte med å observere kva som skjer havstraumane under isen.
Frysepunktet til havvann synker med økende saltholdighet og med økende trykk – jo saltere vannet er eller jo høyere trykket er, jo mer kan man kjøle det ned før det fryser. Ferskvann fryser ved 0\(^\circ\)C – havvann ved -1.9\(^\circ\)C. På 1000 m dyp kan man kjøle ned vannet til -2.6\(^\circ\)C innen det fryser. Under de store isbremmene i Antarktis kommer havvann i konatakt med is på store dyp. Når vann er i kontakt med is, så smeltes isen og vannet kjøles ned til frysepunktet. Under Filchner-Ronne isbremmen finnes grunningslinjen (se figur) på 1800 m dyp. Da kan vannet bli veldig kaldt!
Oppgave 1
Frysepunktet er en funksjon av saltholdighet og trykk; \(T_f=T_f(S,P)\). For konstant P (dvs. på et visst dyp) og for små endringer i S endrer frysepunktet seg lineært med saltholdigheten og vi kan skrive \(T_f=kS+m\).
a) Vi vet at \(T_f(S=34.4,P=0)=-1.8879^\circ C\) og \(T_f(S=34.7,P=0)=-1.9051^\circ C\). Bestem konstantene \(k\) og \(m\).
b) Hva er \(T_f(S=34.5,P=0)\)?
c) Hva er \(T_f(S=0,P=0)\)? Stemmer det? Hvorfor/hvorfor ikke?
På samme måte kan vi, for en gitt saltholdighet, skrive \(T_f=kP+m\).
d) Vi vet at \(T_f(S=34.5,P=0)=-1.8936^\circ C\) og \(T_f(S=34.5,P=1000dbar)=-2.6466^\circ C\). Trykket øker med omtrent 1 dbar per meter, så trykket er ca 100dbar på 100 m dyp, 200dbar på 200 m dyp og så videre. Bestem konstantene \(k\) og \(m\).
e) Hva er frysepunktet når P=2000dbar (ca 2000 m dypt)?
f) Min kollega Svein Østerhus har vært med og boret gjennom den tykke isen Filchner-Ronne isbremmen i Weddellhavet og gjort målinger av vannet under. Den laveste temperaturen de målte var -2.53\(^\circ\)C. Saltholdigheten var 34.5. Hvor dypt må de (minst) ha vært?
g) Hvor kaldt kunne vannet ha vært om du målte nede ved grunningslinjen (1800 m)?
Oppgave 2
Når is smelter i saltvann skjer to ting; temperaturen synker ettersom varmen fra vannet brukes til å smelte isen, og saltholdigheten synker ettersom saltvannet blander seg med smeltevannet fra isen. For å smelte en viss mengde is trenger vi en viss mengde varme – skal vi smelte dobbelt så mye is trenger vi dobbelt så mye varme. Forandringen i temperatur er proporsjonal med forandringen i saltholdighet: \(k=\Delta T/\Delta S\)=2.4. En linje med stigningstall 2.4 i et TS-diagram (et diagram med salt på x-aksen og temperatur på y-aksen) viser hvordan saltholdighet og temperatur forandres når is smelter i havvann. Den kalles for en Gade-linje (se figur) etter Professor Herman Gade fra UiB.
a) Finn ligningen (\(T=kS+m\)) som beskriver hvordan temperaturen forandrer seg når is smelter i vann som har T=2\(^\circ\)C og S=34.6? Plot den i et TS-diagram (en graf med saltholdighet på \(x\)-aksen og temperatur på \(y\)-aksen).
b) Hvor salt er vannet når T=0\(^\circ\)C?
c) Hvor salt er vannet når vannet er på fryspunktet? Her trenger man å bruke uttrykket for frysepunktet som du kom fram til i oppgave 1 (P=0).
d) Figuren nedenfor viser et TS-diagram med data fra en CTD stasjon som ble tatt ved fronten av Filchner isbremmen da jeg var der for noen år siden. Hva var den laveste temperaturen som vi målte da? Hvordan kan det ha blitt så kaldt?
e) Finn Gade linjen som går gjennom punktet med det kaldeste vannet vi observerte og plott den sammen med dataene og og linjen som angir frysepunktet (fra oppgave 1, P=0).
f) Det meste av vannet som kommer inn under Filchner-Ronne isbremmen er på frysepunktet (P=0). Hvor salt var det kaldeste vannet som vi observerte når det kom inn under isbremmen, dvs før det smeltet is?
Med hjelp av Gade linjen kan vi bestemme hvor salt vannet som kommer ut fra hulrommet under Filchner-Ronne isbremmen var når det strømmet inn. Ettersom vi vet hvordan saltholdigheten endrer seg langs fronten (det blir saltere jo lenger vest man går) så kan vi også si hvor vannet strømmet inn.
Bland vann og isbiter i en skål og sett i termometeret. Rør godt om en stund. Hva viser termometeret?
Hell oppi salt og rør godt om. Hva skjer med termometeret? Hva skjer om du heller oppi enda mer salt? Hvor kaldt kan du få vannet?
Når en blanding av vann og is er i likevekt, så er temperaturen på frysepunktet. Når du heller i salt senkes frysepunktet (jo saltere vannet er, jo lavere er frysepunktet) og blandingen er ikke lenger i likevekt. Varme fra vannet brukes til å smelte is og temperaturen synker, enten til alt isen er smeltet eller til temperaturen i vannet er på frysepunktet.
Den här veckan kommer det blog från min kollega Svein Østerhus som befinner sig på en annan forskningsbåt, på andra sidan av kontinenten men jag tänkte ändå att ni skulle få en kort uppdatering (och ett nytt problem) från mig!
Alla mina riggar är nu i vattnet – och det är en betydligt mindre nervös Elin som går och lägger sig om kvällen nu än det var tidigare. Det är mycket som ska förberedas, mycket man ska tänka på när man sätter ihop riggarna, så många bitar som ska passa ihop – och mycket som kan gå fel. Vanligvis har jag en tekniker med mig som har full koll på vilka muttrar som ska sitta var och i vilken ordning ringar och shacklar ska sitta, men nu var det jag som stod där ute på däck med skiftnyckeln i handen och skulle hålla ordning på allting – och se till att allting var färdigt när det var min tur. Men det gick bra! Och så var Araon till slut på rätt position och vi kunde börja!
Mr Ham, den koreanska riggteknikern, ger tecken till kranföraren och snart ligger min första oranga boj och guppar i vattnet bakom båten. Vi kör långsamt framåt och matar ut lina från vinshen allteftersom – var femtionde meter fäster jag och Karen instrumenter på linan. Det går fort, alla vet vad de ska göra. Bojen blir mindre och mindre och snart är 300 m med lina utvinschad och alla instrumenter är i vattnet. Det är bara ankaret (3 gamla
järnvägshjul) som står kvar på akterdäck – men snart försvinner också det ner i djupet med ett stort plask. Den stora oranga bojarna dras fram genomvattnet mot oss allteftersom ankaret sjunker, men tillslut fösvinner också de under ytan. Ankaret kommer till slut att landa på botten – vanligtvis någonstans mittemellan platsen där det blev släppt ner och platsen där den sista bojen
försvann under ytan – men för att vi ska veta exakt* var riggen står så “triangulerar” vi med hjälp av utlösaren. På tre olika platser skickar vi ner signaler till utlösaren och ber honom svara -och utifrån tiden det tar för svaret att komma tillbaka kan vi räkna ut avståndet mellan båten och utlösaren. Eftersom vi vet var båten är, så kan vi räkna ut var riggen står… kanske ni vill hjälpa till? Jag tror det är enklast att lösa problemet grafiskt!
När vi släppt ner ankaret till min första rigg så åkte vi först 443 m i riktning -40.2 grader (se förklaring längst ner) till första trianguleringspunkten. Då var avståndet till utlösaren 802m. Därifrån åkte vi 862 m i riktning 172 grader och fick ett avstånd på 754 m. På den sista punkten var avståndet till utlösaren 816 m. Då hade vi åkt vi 867 m i riktning 53.0 grader från punkt nummer 2. Det är 600 m djupt och utlösaren sitter 25 m över botten. Hydrofonen som vi använder för att prata med utlösaren sänker vi ner 10 m under ytan. Var står riggen? Hur långt hade ankaret drivit? Hur noggrann är trianguleringen? Kan du uppskatta felet?
Däcksenheten som pratar med utlösaren använder en ljudhastighet på 1497 m/s när den beräknar avståndet till utlösaren. Med hjälp av data från en CTD-profil så beräknade jag den faktiska ljudhastigheten (som är en function av salthalt, temperatur och tryck) och kom fram till att medelhastigheten bara var 1447 m/s. Spelar det någon roll i uträkningarna ovan? Kan du korrigera dina beräkningar? Riktningarna angivs som “grader motsols från x-axeln”. X-axeln pekar mot öst, så om vi åker mot öst så är vinkeln noll grader, om vi åker mot norr så är vinkeln 90 grader och om vi åker söderut så är vinkeln -90 grader.
Med CTD och LADCP (strömmätare som sitter på CTD:n) får vi reda på hur vattnet strömmar och vilken temperatur det har just nu, när vi är här – men vi vill så klart också veta vad som händer när vi rest hem igen. Därför sätter vi ut instrumenter på så kallade riggar som kan stå kvar och mäta när vi åkt hem, och så kan vi komma tillbaka och hämta dem senare. Jag har aldrig varit i Amundsenhavet tidigare, så jag har inga riggar att plocka upp jag ska bara sätta ut nya. Mina svenska, engelska och Koreanska kollegor har riggar i vattnet – och det var med stor spänning vi tidigare i veckan närmade oss platsen där en av dem för två år sen sattes ut. Karen skickade hydrofonen över relingen och ner i vattnet och knappade in utlösarens speciella kod. Långt under oss nere på botten stod den och väntade snällt på att få höra från oss – och när den efter två år nu äntligen gjorde det så svarar den glatt “jag är här!”. Karen knappade in en ny kod som betyder “släpp”, och snart fick hon ett nytt svar “jag har släppt, jag är på väg upp!”. Alla spejade ut i dimman – ivriga att vara den första som fick syn på de gula bojarna.
– Där är den! Där borta!
Besättningen är snabbt ut i en mindre båt för att börja arbetet med att plocka upp riggen – de vet vad de ska göra, det här har de gjort förr. Några timmar senare är alla instrument ombord och vi arbetar för fullt. All data ska lastas över från instrumenten till datorer och hårddiskar, sedan ska instrumenten gås över och få nya batterier och programmeras. Imorgon ska de ner i vattnet igen!
Koreanerna hade inte lika tur; deras första rigg hade gått av en bit ovanför botten och det var bara utlösare och ett par temperatursensorer som kom upp. Deras andra rigg var helt borta – troligtvis är det ett stort isberg som dragit den med sig. Men de sista tre kom upp som på beställing!
I går hade vi möte med besättning och tekniker för att gå igenom hur mina riggar ser ut och för att bestämma hur vi bäst sätter ut dem. Besättningen talar dålig eller ingen engelska*, så mötet hölls på koreanska – och bara då och då kom det en fråga på engelska till mig. I en knapp timme lät det ungefär så här:
Jag har i lugn och ro förberett mina instrumenter och min utrustning – i tron om att det fortfarande var flera dagar kvar tills de skulle i vattnet. Koreanerna hade fyra riggar kvar att sätta ut först. Men så blåste det upp och helt plöstligt gick vågorna höga – och kaptenen gav order om att det var för farligt att arbeta på däck… så nu har de vänt hela arbetsschemat på huvudet och vi kör med full fart västerut, till västra delen av Getz shelfis. Där är det mer is och förhoppningsvis mindre vågor, och desutom kan vi då använda tiden med dåligt väder till att förflytta oss, istället för att ligga och vänta på att vi ska kunna sätta ut riggar. Så nu är det helt plöstligt min sista rigg som står överst på dagordningen …och jag har tyvärr inte tid att skriva mer till er just nu!
*Jag frågade La, en av oceanograferna som pratar bra engelska var han lärt sig språket. De andra som pratar bra engelska har alla gjort doktorgrad eller bott utomlands – men jag visste att han inte har gjort det. Efter en stund kom det fram att han under studietiden en gång i veckan pratat engelska med de enda i Korea som är villiga att prata engelska med dig helt gratis: Jehovas vittnen och mormoner! “Men jag är fortfarande Buddhist, jag ville bara lära mig prata engelska och hade inte råd med privat lärare…”
Vi reiser på tokt til Amundsenhavet annenhvert år og gjør masse målinger. Slik får vi et bilde av hva som skjer i det tidsrommet vi er der. Men vi vil selvsagt også vite hva som foregår når vi ikke er der. Derfor setter vi ut «rigger». En rigg er kort sagt et anker, en line som vi fester instrumenter på, og deretter flyteelementer som holder den oppe. Riggen plasseres på bunnen og måler (vanligvis hastighet, salt og temperatur, men vi skal også ha instrumenter som måler konsentrasjonen av oksygen i vannet) til vi kommer tilbake ett eller to år senere og plukker den opp igjen. Hvordan riggen ser ut og hvilke instrumenter som settes på er avhengig av hva man skal studere. I tabellen i oppgave 2 finner du informasjon om noen av instrumentene vi bruker og her ser du hvordan en av mine rigger ser ut:
Oppgave 1
Nå kan du få designe din egen rigg! Hvordan skulle den sett ut om du ville…
a) studere hvordan vannets saltholdighet og temperatur forandrer seg i de øvre 200 m i løpet av ett år i et område som er 500 m dypt?
b) studere en bunnstrøm som når opp til 300 m over bunn?
c) finne ut hvor mye varmt vann som strømmer inn under en isbrem? Det er 800 m dypt. Tenk på at isbremmen kan være 300 m dyp.
Oppgave 2
Gjør beregninger for din egen rigg eller for en rigg som har:
1 x utløser (25 mob); 3 x SBE37 (25, 150 og 300 mob), 1 x RCM (50 mob), 1 x ADCP (300 mob) og 5 x SBE56 (50, 75, 100, 200, 250 mob). Mob=meter over bunn.
Instrumentene har følgende dimensjoner (alle er omtrent sylinderformet):
a) Hvor mye veier instrumentene på riggen i luft? I vann?
Riggen må også ha flyteelementer (glasskuler) for å holde seg vertikal!
b) Hvor stor er oppdriften fra en glasskule? Glasskulenes diameter er 43 cm og har en masse på 22 kg.
c) Hvor mange glasskuler trenger vi for å holde riggen oppe?
Oppgave 3
Når det er sterk strøm så dras riggen ned mot bunn – det er ikke bra! For det første så får man ikke målinger fra det dypet man hadde tenkt, og for det andre så kan mange instrument ikke måle når de heller for mye. En ADCP kan for eksempel ikke måle strømmen om den heller mer enn 15\(^\circ\). Derfor setter vi på ekstra flyteelementer for å holde riggen vertikal også når det er sterk strøm. Kraften som det strømmende vannet utøver på riggen er proporsjonal med området (arealet) som vannet treffer.
a) Hvor stor andel av riggens areal utgjør linen?
b) Hvor mye minsker motstanden om vi bytter til en line som bare er 6 mm i diameter?
c) Et instrument har blitt dratt ned til 170 m over bunnen (mob) og dratt 218 meter nedstrøms. Et annet instrument har blitt dratt ned til 65 mob og 105 meter nedstrøms. Formen på linen kan beskrives med en (halv) parabel. Finn uttrykket for parabelen.
d) Trykksensoren på en ADCP viser at den nå sitter 40 mob. Hvor mye heller den da? Kan vi bruke målingene?
e) Hvor høyt opp måtte ADCP’en ha vært for at vi skulle kunne bruke målingene?
f) Hvorfor tror du vi heller setter en ADCP høyt oppe så den «ser» nedover enn en som sitter nær bunn og «ser» opp?
Oppgave 4
Når vi henter opp riggen igjen og laster ned dataene fra instrumentene får vi tidsserier av strøm (hastighet), temperatur, og saltholdighet. Nå skal vi kikke på data fra rigger som stod ute i Amundsenhavet i 2012
a) Les inn og plot strømmålingene fra rigg S4 mellom 17-24 juni, 2012. (Riggdata_S4_1). Strømmålingene er i cm/s. Hva er det vi ser?
b) Hva er middelstrømmen? I hvilken retning går den? (\(u\) gir strømstyrken i \(x\)-retning (mot øst) og \(v\) gir strømmen i \(y\)– retning (mot nord)).
c) Om du skal tilpasse eller beskrive observasjonene med en funksjon , hvilken velger du da?
d) Bestem konstantene ved hjelp av regresjon.
e) Et isfjell flyter med strømmen i nærheten av S4 – sett opp et utrykk (på vektorform) for hvordan isfjellet kommer til å forflytte seg og plott trajektorien i en ny figur. Beskriv bevegelsen.
f) Plott strømmen en uke fram i tid ved hjelp av din funksjon fra (d).
g) Les inn data fra S4 24/6 – 1/7 og plott den i samme figur – stemmer det med din modell? Hvorfor/hvorfor ikke? (Filen heter: Riggdata_S4_2).
Oppgave 5
Les inn i plott trykkmålingene fra rigg C2. Her var strømmen mye sterkere enn vi trodde, og vi hadde ikke satt på tilstrekkelig med flyteelementer 🙁 (Filen heter: Riggdata_C2).
a) Hva er det vi ser? (hint: se oppgave 2)
b) Hvor dypt sitter instrumentet når det er svak strøm? (1 m \(\approx\) 1 dbar)
c) Hvor dypt dras det ned maksimalt?
d) Hvor stor del av tiden har det blitt dratt ned mer enn 40 m? 80 m?
e) \(u\) gir strømstyrken i \(x\)-retning (mot øst) og \(v\) gir strømmen i \(y\)– retning (mot nord). Bruk Pythagoras og sett opp et uttrykk for strømstyrken. Regn ut strømmen! Hvor sterk er den sterkeste strømmen? Middelstrømmen? Hvor mange kilometer per time er det?
f) Er det noen sammenheng mellom strømstyrke og trykk (dvs neddragning)? Hvordan ser det ut? Beskriv sammenhengen matematisk og forklar med ord.
Oppgave 6
Instrumentene går på batteri – og hver gang de gjør en måling brukes det litt (eller mye om det er en ADCP) energi. Vi vil selvsagt at instrumentene skal gjøre målinger helt til vi kommer tilbake og henter riggen, så vi regner ut på forhånd hvor ofte vi kan gjøre målinger uten at batteriet tar slutt. Men vi må også ta hensyn til for eksempel tidevann når vi bestemmer hvor ofte vi skal måle.
a) Det daglige tidevannet (en av komponentene) har en periode på 25.8 timer. Tidevannet kan beskrives med en sinus kurve. Amplituden (og fasen) avhenger av hvor vi er, men anta at amplituden er 10 cm/s og fasen er 0. Sett opp et uttrykk som beskriver tidevannet og plott det tretti dager fram i tiden.
b) Om vi hadde gjort målinger bare en gang om dagen (dvs hver 24 h), hvordan hadde vår tidsserie sett ut da?
c) Hvilken periode har «svingningen» som vi da observerer?
d) Tidevannet som vi observerer er en sum av mange tidevannskomponenter med ulike perioder. En annen heldaglig tidevannskomponent har en periode på 23,93 timer. Sett opp uttrykket for den tidevannskomponenten dersom amplituden er 9 cm/s (fasen kan du sette til null) og plott summen av de to komponetene. Hva ser du? Hvordan endres amplituden? Kan du forklare hva som skjer? (tips – plott både de ulike komponentene og summen av dem). Sammenlign resultatet med resultatene dine fra oppgave 3g.
Alle vet at Arkimedes satt i badekaret sitt og ropte «Aureka!» – men vet du hvorfor?
Til dette eksperimentet trenger du:
Et stort glass eller for eksempel en høy (og ikke altfor brei) skål eller karaffel (gjennomsiktig)
En liten plastkopp (som får plass i glasset/skålen/karaffelen)
Et par mynter eller steiner (eller noe annet «tungt»)
Et eple (eller noe annet som flyter)
Fyll glasset med vann og sett nedi plastkoppen. Fyll den deretter med så mange mynter som mulig uten at den synker. Marker (med en penn som det går an å fjerne, eller med å holde fingen) hvor høyt vannet går.
Om vi nå legger myntene i glasset, hva skjer da? Tror du at vannivået endres? Opp eller ned?
Gjett før du prøver!
Gjør forsøket på ny, denne gangen med eplet. Hva skjer da?